Dunn P.K., Smyth G.K. Generalized Linear Models With Examples in R . . . . . . . . . . . . .1
Title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Chapter 1. Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Chapter 2. Linear Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Chapter 3. Linear Regression Models: Diagnostics and Model-Building . . . . . . . . . . .112
Chapter 4. Beyond Linear Regression: The Method of Maximum Likelihood . . . . . . . . .184
Chapter 5. Generalized Linear Models: Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230
Chapter 6. Generalized Linear Models: Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262
Chapter 7. Generalized Linear Models: Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284
Chapter 8. Generalized Linear Models: Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316
Chapter 9. Models for Proportions: Binomial GLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352
Chapter 10. Models for Counts: Poisson and Negative Binomial GLMs . . . . . . . . . . . . .390
Chapter 11. Positive Continuous Data: Gamma and Inverse Gaussian GLMs . . . . . . . . .444
Chapter 12. Tweedie GLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .476
Chapter 13. Extra Problems 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .510
Appendix A. Using R for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522
Appendix B. The GLMsData package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .544
Selected Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548
Index: Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .570
Index: R commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .572
Index: General topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .576
This textbook presents an introduction to generalized linear models, complete with real-world data sets and practice problems, making it applicable for both beginning and advanced students of applied statistics. Generalized linear models (GLMs) are powerful tools in applied statistics that extend the ideas of multiple linear regression and analysis of variance to include response variables that are not normally distributed. As such, GLMs can model a wide variety of data types including counts, proportions, and binary outcomes or positive quantities.
The book is designed with the student in mind, making it suitable for self-study or a structured course. Beginning with an introduction to linear regression, the book also devotes time to advanced topics not typically included in introductory textbooks. It features chapter introductions and summaries, clear examples, and many practice problems, all carefully designed to balance theory and practice. The text also provides a working knowledge of applied statistical practice through the extensive use of R, which is integrated into the text.