Книга рассчитана на специалистов в области Data Science, обладающих некоторым опытом работы с языком программирования R и имеющих предварительное понятие о математической статистике. В ней в удобной и легкодоступной форме представлены ключевые понятия из статистики, которые относятся к науке о данных, а также объяснено, какие понятия важны и полезны с точки зрения науки о данных, какие менее важны, и почему. Подробно раскрыты темы: разведочный анализ данных, распределения данных и выборок, статистические эксперименты и проверка значимости, регрессия и предсказание, классификация, статистическое машинное обучение и обучение без учителя. Во второе издание включены примеры на языке Python, что расширяет практическое применение книги.
Прочитав эту книгу, вы узнаете:
Почему разведывательный анализ данных является ключевым предварительным шагом в науке о данных
Как случайная выборка может уменьшить смещение и привести к более высококачественному набору данных, даже в условиях больших данных
Как принципы планирования эксперимента помогают получить наиболее полные ответы на вопросы
Как использовать регрессию для оценки результатов и выявления аномалий
Вы освоите:
Ключевые методы классификации для предсказания, к какой категории относится запись
Статистические методы машинного обучения, которые “обучаются” на данных
Методы обучения без учителя для извлечения информации из немаркированных данных
Добавил: codelibs
Скачать Практическая статистика для специалистов Data Science. 2 изд
Вы можете купить эту книгу тем самым поддержать автора.
Купить
Если вам понравилась эта страница - поделитесь ею с друзьями, тем самым вы помогаете нам развиваться и добавлять всё больше интересных и нужным вам книг