В книге приводятся практические приемы анализа данных. Рассказано, как исследовать и тестировать взаимосвязи между переменными в Excel и использовать его для статистики и анализа. Описан перенос данных из Excel в R, язык программирования с открытым исходным кодом, специально разработанный для выполнения статистического анализа. Отдельный раздел посвящен переносу данных из Excel в Python и выполнению полного анализа данных средствами этого языка. В результате читатель научится выполнять разведочный анализ данных (Exploratory Data Analysis, EDA) и проверку гипотез с использованием языков программирования Python и R.
Для аналитиков данных
Аналитика данных может показаться сложной сферой, но если вы опытный пользователь Excel, у вас есть уникальное преимущество. С помощью этого практического руководства пользователи Excel среднего уровня получат прочное понимание аналитики и стека данных. Прочитав эту книгу, вы сможете проводить исследовательский анализ данных и проверку гипотез с помощью языков программирования Python и R.
Исследование и проверка взаимосвязей — основа аналитики. Используя описанные инструменты и механизмы, вы освоите более продвинутые методы анализа данных. Джордж Маунт подробно объясняет ключевые статистические концепции с помощью электронных таблиц, а затем помогает применить полученные знания об обработке данных для написания программ на языках R и Python.
Эта практическая книга поможет вам:
Изучить основы аналитики в Excel. Используйте Excel для проверки взаимосвязи между переменными, научитесь применять его возможности в статистике и аналитике.
Перейти от Excel к R. Перенесите данные в R, язык программирования с открытым исходным кодом, специально разработанный для выполнения статистического анализа.
Перейти от Excel к Python. Узнайте, как перенести информацию из Excel в Python, научитесь выполнять разведочный анализ, проверку гипотез, а также полный анализ данных средствами этого языка.