Друзья, мы тут исследуем проблемы, с которыми сталкиваются пользователи электронных книг.
Будем вам благодарны за ваши ответы. Опрос займёт не более 5 минут.
Part 1
1 Discovering graph neural networks
2 Graph embeddings
Part 2
3 Graph convolutional networks and GraphSAGE
4 Graph attention networks
5 Graph autoencoders
Part 3
6 Dynamic graphs: Spatiotemporal GNNs
7 Learning and inference at scale
8 Considerations for GNN projects
A Discovering graphs
B Installing and configuring PyTorch Geometric
Graphs are a natural way to model the relationships and hierarchies of real-world data. Graph neural networks (GNNs) optimize deep learning for highly-connected data such as in recommendation engines and social networks, along with specialized applications like molecular modeling for drug discovery.
Graph Neural Networks in Action teaches you how to analyze and make predictions on data structured as graphs. You’ll work with graph convolutional networks, attention networks, and auto-encoders to take on tasks like node classification, link prediction, working with temporal data, and object classification. Along the way, you’ll learn the best methods for training and deploying GNNs at scale—all clearly illustrated with well-annotated Python code!
For Python programmers familiar with machine learning and the basics of deep learning.