Друзья, мы тут исследуем проблемы, с которыми сталкиваются пользователи электронных книг. Будем вам благодарны за ваши ответы. Опрос займёт не более 5 минут.
Пройти опрос

Graph Neural Networks in Action

Graph Neural Networks in Action

Graph Neural Networks in Action
Автор: Keita Broadwater , Namid Stillman
Дата выхода: 2025
Издательство: Manning Publications Co.
Количество страниц: 394
Размер файла: 7,7 МБ
Тип файла: PDF
Добавил: codelibs
 Проверить на вирусы  Дополнительные материалы 

Part 1
1 Discovering graph neural networks
2 Graph embeddings
Part 2
3 Graph convolutional networks and GraphSAGE
4 Graph attention networks
5 Graph autoencoders
Part 3
6 Dynamic graphs: Spatiotemporal GNNs
7 Learning and inference at scale
8 Considerations for GNN projects
A Discovering graphs
B Installing and configuring PyTorch Geometric

 Graphs are a natural way to model the relationships and hierarchies of real-world data. Graph neural networks (GNNs) optimize deep learning for highly-connected data such as in recommendation engines and social networks, along with specialized applications like molecular modeling for drug discovery.

About the book

 Graph Neural Networks in Action teaches you how to analyze and make predictions on data structured as graphs. You’ll work with graph convolutional networks, attention networks, and auto-encoders to take on tasks like node classification, link prediction, working with temporal data, and object classification. Along the way, you’ll learn the best methods for training and deploying GNNs at scale—all clearly illustrated with well-annotated Python code!

What's inside

  • Train and deploy a graph neural network
  • Generate node embeddings
  • Use GNNs for very large datasets
  • Build a graph data pipeline

About the reader

 For Python programmers familiar with machine learning and the basics of deep learning.


Похожее:

Список отзывов:

Нет отзывов к книге.